
Using COM Objects For Data Access And Visualization

Ganesh Gopalan

COAS, Oregon State University

104 Ocean Administration Building

Corvallis OR-97333

Abstract: An Earth Science product could be the end result of
several software tasks that process raw data. In this paper we
describe how the tasks maybe mapped to different technologies
to achieve the end result. The focus has been on building and
using COM objects to accomplish specific tasks and in
leveraging the functionality of existing applications such as
MATLAB. Three applications are discussed; first the AVHRR
Temperature Extractor that extracts sea surface temperatures
from AVHRR images for a given drifter track and compares
them with the temperatures collected by the drifter. User
parameters are first submitted to the web-server. COM objects
extract temperature values from the pixels in the image that
correspond to the drifter's location (track). Drifter and image
temperatures are returned to the web-server. The output can be
viewed as XML, which is rendered using an XSL style-sheet. If
the user now chooses to see a plot of the data, temperature
values are extracted from the XML tree and passed to
MATLAB using OLE automation. MATLAB can be launched
both on the web-server and on the client and its methods
invoked to generate a JPEG file as the final result. The
technologies used in this application include DCOM, OLE
automation and XML. The next application is the generation of
volumetric slice plots from temperature and other data available
at different depths. 3D slices can be applied along any of the
latitude, longitude or depth axes. MATLAB is again accessed as
an automation server to generate the plot. Finally we discuss the
development of smart sensors. This project involves adding logic
to an instrument such as a drifter to enable it to be controlled
remotely or to provide near real-time access to data. A Windows
CE device was selected to host the instrument. A DCOM client
and server are used for accessing data on the device. Serial I/O
is used to read parameters from the measuring instrument and
supply it to the device.

1. INTRODUCTION

In this paper we describe applications where several software
technologies have been used effectively to accomplish given
Earth Science tasks.

The AVHRR Temperature Extractor retrieves temperatures
from AVHRR images that match a given drifter’s path and
time frame.
“Volumetric Slice Plots” demonstrates 3D visualizations of
ocean data at different depths, using MATLAB.

The “Smart Sensor” project involves connecting an
oceanographic instrument, such as a drifter, to a Windows CE
device that can host some programmable logic. The smart
sensor is designed to provide near real-time updates of the
data to clients.

In all these applications, Microsoft’s Component Object
Model (COM) is one of the key technologies used and is
highly useful in inter - object communications.

2. AVHRR TEMPERATURE EXTRACTOR

The Temperature Extractor is a tool that allows the user to
compare drifter temperatures with temperatures from
AVHRR images that match the drifter’s timeframe. Images
with pixels that match the drifter’s path are decompressed
and the temperatures extracted from the pixel values.

2.1. USER INTERFACE

A list of drifter Ids is displayed from which the user can make
a selection. The start and end dates are retrieved dynamically
based on the drifter selected. These can be modified to select
a shorter timeframe. The output format can be XML, HTML
(Table) or text. To view a plot of the data, the user must
select XML, as this allows the appropriate temperatures to be
extracted from the XML tree and passed to MATLAB.

Fig. 1. Output for drifter 20137.

2.2. OUTPUT

Figure 1 shows output for a selected drifter (20137). The
images whose dates are closest to that of the drifter for a

given date and time can be viewed by clicking on the links.
The drifter position will be shown superimposed on the
image. Also shown are the latitude, longitude, temperature
and date and time when the drifter values were recorded,
along with the image temperature and the image dates.

Fig. 3. A plot of drifter temperature and image temperature for comparison and analysis

Figure 3 shows a plot of drifter temperature versus image temperature for drifter 20137. The image temperatures were
extracted from the GIF image by running a decompression algorithm and reading the pixel values.

Fig. 4. The Implementation of the AVHRR Temperature Extractor

2.3. IMPLEMENTATION

The figure shows the application framework for the AVHRR
Temperature Extractor. The backend architecture is built on a
Windows NT/2000 intranet. The entry point into the system
is through a Microsoft Windows 2000 workstation running
Internet Information Server 5.0. Requests are handled by a
piece of code called an ISAPI extension. ISAPI stands for
Internet Server API. It is far more powerful than CGI in two
key respects [CWT97]. Performance – well-designed ISAPI
extensions can improve performance by an order of
magnitude over a similar CGI application. Flexibility – ISAPI
extensions enjoy a close integration with the server, which
enables some actions to be executed more cheaply.

When a request is received by the web-server, appropriate
validation is done before launching objects on remote
machines to process the request. This is done using the
Distributed Component Object Model (DCOM). DCOM
supports distributed objects – that is, it allows application
developers to split a single application into a number of
different component objects, each of which can run on a
different computer [EE98]. The ISAPI extension becomes a
DCOM client and the remote objects are DCOM servers.

There are 2 DCOM components that run as remote servers in
this application on a machine that serves as a “computational
tier”. One is called the Database Component, which is
responsible for making connections to the database and
retrieving data. The other component, called the Imaging
Component is responsible for extracting temperatures from
the images. The Imaging Component contacts the Database
Component rather than the database for data. The results are
then sent back to the web-server (ISAPI extension), which
then returns them to the client.

The objects expose COM interfaces (represented by the lines
with circles at the end), so that their methods can be invoked
locally or remotely. The ISAPI extension that is part of the
multi-tiered system uses DCOM to invoke the database object
and the Imaging component when processing a user request.
Several such components can be built and integrated into the
system.

Communication between the web-browser and web-server is
limited to HTTP, which gives clients outside the local
intranet access to the system without granting them the ability
to run any code on the local system(s). This prevents any
malicious use of system resources. The web-server
communicates with remote objects on the computational tier
using DCOM in a manner transparent to the clients. Also,
non-DCOM clients can access the system in this manner.

The ISAPI extension uses static load balancing when
processing requests. The DCOM objects are launched on 2
different machines for alternate requests. The framework
allows more machines to be added to the system and the
components can be installed and registered on these
machines.

A. The Database Component

The Database Component has been implemented using MFC
and ODBC for database functionality. MFC is Microsoft’s
class libraries for software development while ODBC or
Open Database Connectivity is a standard used in
communicating with databases. However, the database
functionality lies underneath a layer of COM that enables
other database libraries to be used for data connectivity
without affecting how the object is accessed by other COM
clients. COM also supports versioning, so clients aware of

new interfaces (functionality) just use them while old clients
continue to use old interfaces.

Methods supported include those that allow data to be
retrieved from the Drifters and Images tables in the EOS
database on the Microsoft SQL-Server. The client specifies a
filter and provides pointers to memory locations that are to be
filled with query results.

B. The Imaging Component

The Imaging Component returns drifter and image
temperatures.

The Imaging Component creates an instance of the Database
Component that supplies it with GIF images for extracting
the temperatures. The connection to the SQL Server is made
by the Database Object, which then returns the results to the
Imaging Component. The Imaging Component uses a GIF
decompression algorithm to extract those pixel values that
match the drifter’s path.

Both the Database Object and the Imaging Component have
been implemented as in-process, local and remote servers. In-
process servers are those that can be run within the address
space of the client. Their main benefit is that memory
transfers between the server and client are extremely fast.
Local servers are created in a process separate from the client
but on the same machine. Remote servers are launched in a
separate process and on a machine different from that of the
client.

C. Dynamic Invocation Of Remote Objects

Both components (DCOM servers) are capable of being
launched dynamically as a user request comes in. In addition,
the machine on which the objects are to be launched can be
changed without having to recompile any of the back-end
code. This is made possible by passing special parameters to
the ISAPI extension in addition to the user’s query.

Objects can be launched dynamically using COM only when
required. This prevents CPU time from being wasted. The
objects can also be shutdown when not in use, leading to
better utilization of resources.

D. Using MATLAB To Generate a Plot Of the Temperatures

MATLAB can be invoked from the web-server or browser
using a technology called OLE automation. Automation is a
concept through which an object exposes its methods to the
outside and allows them to be invoked through scripting
environments. Automation makes it easier for interpretive
and macro languages to access COM components, and also
makes it easier to write components in these languages

[Rog97a]. The MATLAB object is created and its methods
invoked to load the temperature data into its environment and
generate a JPEG file of the plot. Below is a code snippet in
VBScript that illustrates this concept:

<%

Sub Results()

 data = Request.Form ("data")
 filename = Request.Form ("filename")

 set o = CreateObject
 ("Matlab.Application")

 o.Execute ("h = figure ('visible', 'off')")
 o.Execute ("data=[" & data & "]")
 o.Execute ("x=data(:,1)")
 o.Execute ("y=data(:,2)")
 o.Execute ("z=data(:,3)")
 o.Execute ("plot(x,y,x,z)")
 o.Execute ("xlabel('Row no.')")
 o.Execute ("ylabel('Temperature')")
 o.Execute ("legend
 ('Drifter Temperature',
 'Image Temperature')")
 o.Execute ("saveas(h,'" &
 "c:\InetPub\wwwroot\temp\"
 & filename & "')")

 response.redirect
 ("http://skor.oce.orst.edu/temp/"
 & filename)

End Sub

%>

The code shows how the MATLAB object is created and
initialized with data, and how the generated plot is saved to a
JPEG file. The angular brackets <% and %> indicate that the
code runs on the web-server.

3. VOLUMETRIC SLICE PLOTS

This application demonstrates the use of OLE automation to
generate 3D slices of the ocean. Parameters available for
plotting include temperature, oxygen, phosphate levels etc.

3.1. USER INTERFACE

The user can select a grid and a range of depths and any of
the parameters such as temperature, phosphate etc. as shown
in figure 5. When displayed as XML, the data can be plotted
in the form of a 3D slice.

Fig. 5. User interface for generating volumetric slice plots.

3.2. OUTPUT

Figure 6 shows the output for a user query. For the returned
data, the user can select points along the 3 axes (latitude,
longitude and depth) to generate a 3D slice as shown in figure
7.

Fig. 6. The output for a user query of latitude, longitude,
depth and temperature

 Fig. 7. A 3D slice of the data in figure 6

Fig. 8. The implementation of volumetric slice plots

.

3.3. IMPLEMENTATION

The implementation is identical to that of the Temperature
Extractor except that a different COM object called the
NOAADB component is used to retrieve 3D data. The
Imaging Component is not used in this application.

The following code snippet illustrates how the 3D slices are
generated from the volumetric data.

<%Results%>

<%

Sub Results()

 ….

 set o = CreateObject ("Matlab.Application")

 o.Execute ("[xi,yi,zi]=meshgrid(min(x):max(x),

 min(y):max(y),min(z):10:max(z))")

 o.Execute ("vi=griddata3(x,y,z,v,xi,yi,zi)")

 o.Execute ("slice(xi,yi,zi,vi,[" &

 slice_long & "], [" &

 slice_lat & "], [" &

 slice_depth & "])")

 o.Execute ("saveas(h,'" &

 "c:\InetPub\wwwroot\temp\"

 & filename & "')")

 response.redirect ("http://skor.oce.orst.edu/temp/"

 & filename)

End Sub

%>

The code shows how an instance of the MATLAB object is
created through scripting and its methods invoked to create a
3D slice.

4. SMART SENSORS

This project demonstrates the advances in software and
hardware technologies with regards to intelligent
instrumentation. The goal is to show how the instrument itself
can serve as a data source and provide near real-time updates
to clients. The project is in the preliminary stages and is still
under development. Currently the hardware configuration is
complete. Serial I/O with an instrument is not yet
implemented.

4.1. IMPLEMENTATION

We chose a Windows CE device made by Arcom Control
Systems called the SBC-MediaGX-233 with 16MB of flash
memory. The small footprint (a little more than 8” x 5”)
makes it suitable for attaching to a drifter. The device comes
with about 32MB of RAM, a 10/100 Base T Ethernet port, 4
serial ports and a flat panel display (which is optional). It
comes pre-installed with the Windows CE (version 3.0)
operating system. It also has a built-in web-server that
enables it to be accessed directly via a URL. The system
being implemented is for proof of concept only, as during
deployment the device would have to be connected to the
network via a wireless card.

The communication between the server and client is through
DCOM, while the measurements from the drifter will be read
using serial I/O. Currently, we read data from a flat file, but
in the final implementation, the data will be logged to this file
by the instrument. Eventually we hope to support features
such as the ability to dynamically change the sampling
frequency on the drifter using the COM objects.

Fig. 9. The proposed Windows CE implementation of a smart sensor

The client was developed using Visual C++ 6.0 for Windows NT/2000 and the server was developed using Embedded Visual
C++ 3.0 for Windows CE and the Active Template Library (ATL).

5. CONCLUSION

These projects demonstrate how COM and DCOM can be
used in the development of software components for
specific tasks. The components can be launched
dynamically and the launch location (machine) can be
changed at run-time. We have also been able to
demonstrate that the COM components enable the
development of thin clients since most of the
computationally intensive work (such as GIF
decompression) is done on the server by these components.
The availability of DCOM on Windows CE facilitates data
access through smart instruments. Finally, MATLAB itself

supports COM, which allows scripting environments such
as VBScript or JScript to use its plotting capabilities.

REFERENCES

[CWT97] K. Clements, C. Wuestefeld, J. Trent and J.
Clemens, Inside ISAPI. New Riders Publishing, 1997.

[Rog97a] D. Rogerson , Inside COM . Microsoft Press,
1997.

[EE98] G. Eddon G. and H. Eddon, Inside DCOM.
Microsoft Press, 1998.

